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Abstract
Hierarchies of one-dimensional Hamiltonians in quantum mechanics admitting
third-order differential ladder operators are studied. Each Hamiltonian has
associated three-step Darboux (pseudo)-cycles and Painlevé IV equations as a
closure condition. The whole hierarchy is generated applying some operations
on the cycles. These operations are investigated in the frame of supersymmetric
quantum mechanics and mainly involve algebraic manipulations. A consistent
geometric representation for the hierarchy and cycles is built that also helps
in understanding the operations. Three kinds of hierarchies are distinguished
and a realization based on the harmonic oscillator Hamiltonian is supplied,
giving an interpretation for the spectral properties of the Hamiltonians of each
hierarchy.

PACS numbers: 02.30.Hq, 03.65.Ge

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The aim of this work is finding Hamiltonians of the Schrödinger form

H = − d2

dx2
+ V(x), (1)

which admit a third-order differential ladder operator (DLO) of the kind of shift operators, i.e.,
with a linear spectrum, using supersymmetric quantum mechanics (SUSY-QM) techniques
[1, 2].

The third-order operator L will be a DLO of the Hamiltonian H if the following
commutation relation holds

[H,L] = γL ⇐⇒ LH = (H − γ )L. (2)
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The last expression has the form of the standard SUSY intertwining relation [3]

LH1 = H2L, (3)

where L is an intertwining differential operator, and the Hamiltonians H1,H2 are said to be
SUSY partners. Sometimes L is referred also as a SUSY or Darboux transformation and
usually it is of first order; when L is of third order an italic style L is used. If the partner
potential H2 is the original one but shifted (H1 − γ ) the ladder commutation relation (2) is
recovered from (3).

The factorization of the third-order SUSY transformation L in equation (2) as a three-step
chain of 1-SUSY transformations [4] gives a (pseudo) cyclic chain. The closure condition
for the cycle leads precisely to a PIV equation [4–8]. Furthermore, as the factorization of
L is not unique, the consecutive modifications on the cycle lead to different PIV equations
enabling the construction of hierarchies of Hamiltonians with third-order ladder operators and
to transformation properties between solutions of PIV equations with different parameters.
Other approaches dealing with different aspects of PIV hierarchies have been considered in the
literature [9–11].

This work is organized as follows. In the second section, we review the main
properties of 1-SUSY transformations. The three-step chain transformation, the introduction
of intermediate Hamiltonians and a PIV equation as the condition that enables (2) to be
fulfilled will be the subject of section 3. The following section will deal with the construction
of hierarchies: basic operations to find new Hamiltonians with DLO’s or to generate new
solutions of the corresponding PIV equation, and a consistent geometrical representation for
any hierarchy. We will also find a fundamental cell for the parameters of independent PIV

hierarchies. In sections 5–8, the harmonic oscillator is presented as the Hamiltonian from
which known PIV solutions can be derived. Three kinds of hierarchies are given and using
the geometrical representation it is shown how the spectral properties of Hamiltonians are
modified and how the regular PIV solutions are distributed. In the final section (section 9) we
will add some conclusions and remarks.

2. 1-SUSY transformations

When the intertwining operator (IO) in (3) is a first-order differential operator L is called
1-SUSY transformation; its explicit form is [3, 12–15]

L := ∂x − f(x), (4)

where f(x) is a function called superpotential defined as

f(x) := u′(x)

u(x)
. (5)

The generating function u(x) is an eigenfunction of H1, not necessary square-integrable, and
constitutes the kernel of L. Let λ be the associated eigenvalue, H1u(x) = λu(x), called
factorization eigenvalue then, potential V1(x) (1) of H1 can be written as

V1(x) = f ′(x) + f(x)2 + λ, (6)

and the SUSY partner H2 has the related potential

V2 = V1 − 2f ′(x). (7)

From (3) it follows that L transforms eigenfunctions of H1 into eigenfunctions of H2 with
the same eigenvalue. We consider the eigenfunctions in a wide sense and we will call them
‘physical’ if they are square-integrable with appropriate boundary conditions.
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In order to obtain partner potentials V2(x) without new singularities, we see from (7) that
the generating eigenfunctions u(x) must have no vanishing points. Two kind of eigenfunctions
have usually been used in this respect [3, 12–14]: (i) the ground-state wavefunction of H1.
In this case, the spectrum corresponding to physical eigenfunctions of H2 is the same as H1,
except for the ground energy that is missing. (ii) Non-vanishing eigenfunctions with λ below
the ground-state energy. In this case, the spectrum of H2 is either identical to H1 or includes
the new point λ.

The eigenfunctions with eigenvalues above the ground level have vanishing points, thus
leading to singular potentials. However, these singularities can be removed through another
SUSY transformation using an eigenfunction with intercalated vanishing points with the initial
one, then the resulting 2-SUSY partner potential is regular [16].

In this paper, we are interested in a general application of SUSY transformations and
we will keep in mind the possibility of using any eigenfunction even if the potential or
superpotential have additional singularities.

It is possible to find an intertwining relation in the opposite direction of relation (3)

H1L
+ = L+H2 (8)

defining the differential operator

L+ := −∂x − f(x). (9)

Therefore, L+ takes eigenfunctions of H2 into eigenfunctions of H1:

H1

L,λ−−−−−−−−−−−→←−−−−−−−−−−−−
L+,λ

H2 (10)

leading to the factorization of both SUSY Hamiltonians

H1 = L+L + λ H2 = LL+ + λ, (11)

where λ is the factorization eigenvalue of the generating eigenfunction u(x). It is worth noting
that in the literature L+ is identified with the adjoint of L but it is only true for f(x) real, i.e.,
the Hermitian case. When f(x) is complex the operator defined in (9) is no longer the adjoint
but the reverse operation is still accomplished by it. However, the partner Hamiltonian will be
complex [17].

3. 3-SUSY transformations and PIV equations

Chains of SUSY transformations have been widely studied [5–8, 18], here we will consider a
3-SUSY (pseudo)-cyclic transformation that can be written as a three-step chain of 1-SUSY
transformations. Let H1 be a Hamiltonian (1) and L a third-order differential ladder operator,
it can be factorized as [18–20]

L = L3L2L1 = (∂x − f3)(∂x − f2)(∂x − f1) (12)

such that each factor is a 1-SUSY transformation

Li

Hi −−−−−−−→ Hi+1
(13)

Hiui = αiui, Li = ∂x − fi, fi = uix

ui

i ∈ {1, 2, 3}, (14)

where H4 is the shifted original Hamiltonian. In the most general case superpotentials and
intermediate potentials can be complex, but for simplicity we will assume henceforth that
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these factors are real in order to obtain Hermitian intermediate Hamiltonians, although they
can present singularities, leading to a dressing chain of Hamiltonians [8]. Therefore, the
following representations are equivalent1:

H1
L−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ H1 − 2

�
H1 −−−−−−−−→

L1,α1

H2 −−−−−−−−→
L2,α2

H3 −−−−−−−−→
L3,α3

H1 − 2

(15)

where H2 and H3 are auxiliary partner Hamiltonians.

3.1. Factorization properties of L

Let K be the kernel of L, i.e. ψ ∈ K ⇔ Lψ = 0, then as L is a third-order differential
operator K has dimension three. From (2) it is straightforward to see that K is invariant under
H1. Therefore, by a convenient choice of the basis of K we can express H1, restricted to K in
the standard Jordan matrix form with the following possibilities:

(i) Hyperconfluent. The Hamiltonian has one eigenvalue in K. As H1 is a second-order
differential operator then it is not possible to find three independent eigenfunctions
corresponding to this value. Thus, we have two options for the Jordan matrix,

(a)

⎛
⎝λ1 · ·

1 λ1 ·
· 1 λ1

⎞
⎠ ; (b)

⎛
⎝λ1 · ·

· λ1 ·
· 1 λ1

⎞
⎠ . (16)

In the case (b) the kernel includes two independent eigenfunctions of H1 which means
that L must take the form L = L3(H1 −λ1). Then we will say that L is reducible. In this
case, the cycle would include two identical Hamiltonians:

H1 −−−−−−−−→
L1,λ1

H2 −−−−−−−−→
L2,λ1

H1 −−−−−−−−→
L3,λ1

H1 − 2 (17)

This situation is only possible when H1 is the harmonic oscillator Hamiltonian.
(ii) Confluent. The Hamiltonian has two eigenvalues in K. We also have two options for the

Jordan matrix representation:

(a)

⎛
⎝λ1 · ·

· λ2 ·
· · λ2

⎞
⎠ ; (b)

⎛
⎝λ1 · ·

· λ2 ·
· 1 λ2

⎞
⎠ . (18)

In the case (a) the same considerations of the hyperconfluent case (1.b) above apply,
therefore L is reducible and H1 must also be the harmonic oscillator. It is possible to find
a basis made of eigenfunctions of H1.

(iii) Non-degenerated. Now the Hamiltonian has three different eigenvalues. The Jordan
matrix is diagonal⎛

⎝λ1 · ·
· λ2 ·
· · λ3

⎞
⎠ (19)

then, K admits a basis made of Hamiltonian eigenfunctions.

1 From now on the shift constant γ in (2) will be fixed to 2. This can always be done through a rescaling of the
variable x and the potential. Some expressions will be simplified and the PIV equation will be obtained in the standard
form.
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This classification is related to the different Hamiltonian hierarchies that will be shown
in sections 6–8.

Let L+ = L+
1L

+
2L

+
3 , then [H1,L+] = −2L+, and L+ is a lowering operator. Another

useful property comes from the fact that since the operators L+L and LL+ commute with the
Hamiltonian H1, they must be functions of H1 [4, 8, 21, 22]:

L+L = f (H1), LL+ = g(H1). (20)

The functions f (H1), g(H1) must be third-order polynomials. The factorization of each
polynomial depends on the eigenvalues of the eigenfunctions annihilated by L+ or L:

L+L = f (H1) =
i=3∏
i=1

(H1 − εi), Lψi = 0, H1ψi = εi,

LL+ = g(H1) =
i=3∏
i=1

(H1 − ε̃i ), L+ψ̃i = 0, H1ψ̃i = ε̃i .

(21)

Since

L(L+L) = Lf (H1) = f (H1 − 2)L = (LL+)L = g(H1)L (22)

we have that

ε̃i = εi − 2, i = 1, 2, 3. (23)

Now, we are in conditions to prove the following:

Property. If the irreducible (raising) DLOL annihilates the eigenfunction ψ with eigenvalue ε,
H1ψ = εψ , then the lowering operator L+ will annihilate an eigenfunction ψ̃ with eigenvalue
ε̃ = ε + 2.

In order to prove this statement we have to build the eigenfunction ψ̃ , satisfying these
conditions. If H1ψ = εψ , we can build a second linearly independent eigenfunction, ψ⊥,
with the same eigenvalue (for instance by means of the Liouville formula ψ⊥ = ψ

∫
ψ−2).

Then, as L is irreducible, L+ψ⊥ := ψ̃ 
= 0, satisfies all the requirements.
Of course, this property can be read backwards: if the irreducible (lowering) DLOL+

annihilates the eigenfunction ψ̃ with eigenvalue ε̃, H1ψ̃ = ε̃ψ̃ , then L will annihilate an
eigenfunction ψ with eigenvalue ε = ε̃ − 2. The property is trivially satisfied when L is
reducible.

This property will be used later to characterize the eigenfunctions of H1 spanning support
spaces for the representation of the algebra generated by {L,L+}.

3.2. Closure relation and fourth Painlevé equation

As the chain (15) is not ‘exactly closed’, a continuation is possible applying successively
the same transformations and taking care of the factorization energies2. As the intermediate
intertwining relations LiHi = Hi+1Li (3) hold, i = 1, 2, 3, the double factorization (11) of
each Hamiltonian in the chain

Hi+1 = LiL
+
i + αi = L+

i+1Li+1 + αi+1 (24)

gives a system of three equations for the superpotentials [5]

f ′
2 + f ′

1 = f 2
1 − f 2

2 + β1 (25)

f ′
3 + f ′

2 = f 2
2 − f 2

3 + β2 (26)

2 Note that some elements are shifted and some are not, for instance L4 = L1 and α4 = α1 − 2.
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f ′
1 + f ′

3 = f 2
3 − f 2

1 + β3 (27)

where

βi := αi − αi+1 (28)

and by definition3 β1 + β2 + β3 = 2. All the superpotentials can be written in terms of f1 or
better using new functions gi(x) defined as

gi(x) := fi(x) − x. (29)

Then

f2 = −g1

2
+

g′
1

2g1
+

β2

2g1
and f3 = −g1

2
− g′

1

2g1
− β2

2g1
. (30)

And the condition of the system to be solved is that g1 fulfils Painlevé IV equation4 [4–6, 8]:

gg′′ = 1
2 (g′)2 + 3

2g4 + 4xg3 + 2(x2 − a)g2 + b (32)

with parameters

a = 1 − β1 − β2

2
b = −1

2
β2

2 . (33)

Summarizing, the Hamiltonian H1 admits a third-order DLO if it has a superpotential which
provides, by means of (29), a solution of PIV. The way back is also possible, i.e., each solution
of PIV generates a Hamiltonian with a third-order DLO.

Of course, the final PIV equation associated with the third-order DLO is not unique: (i)
each function gi is solution of another PIV and (ii) we can take other factorizations of the same
DLOL leading to further PIV equations. These features will be discussed in the following
sections.

4. Hierarchies and geometrical representation

The relation between the third-order DLO and PIV solutions is based on the factorization of
the former: its chain representation. A DLOL is determined by the functions in its kernel,
and depending on the order in which these functions are annihilated different factorizations
are obtained [11, 23, 24]: up to 3! possibilities, which is also the number of new intermediate
Hamiltonians. Starting from one cycle, with Hamiltonians {H1,H2,H3}, we want to obtain
the other five by means of certain operations.

The same operations can be applied to any of the cycles so obtained. In this way, the set
of new Hamiltonians turns out to be infinite. All these Hamiltonians are said to belong to a
hierarchy. The elements of each hierarchy can be considered into three layers: Hamiltonians
with the third-order DLO, factorization eigenvalues and PIV solutions.

In this section, two kinds of operations are defined: local and global, together with a
geometrical representation that will help in understanding the structure of any hierarchy.

3 Due to the invariance of the chain over addition of a global constant to the Hamiltonians, only eigenvalue differences
are relevant. Since just two of the three eigenvalues are independent we will set the third one equal to zero.
4 Without rescaling the equation for g1 has the form

g1g
′′
1 = 1

2 (g′
1)

2 + 3
2 g4

1 + 2γ xg3
1 + (

γ 2

2 x2 + 2β1 + β2 − γ )g2
1 − β2

2
2 . (31)

6



J. Phys. A: Math. Theor. 41 (2008) 045204 J Mateo and J Negro

V1 V3

α2α1

α3

V2

g2

g3

g1

= 0

Figure 1. Three-step Darboux chain geometrical representation. The arrows show the direction of
the 1-SUSY transformations.

V1 V -21V3 V3

-2α2α1 α1

α3 α3

V2 V2

g2 g2

g3 g3

g1 g1

R

R-1

α2

Figure 2. Geometrical representation of a cycle rotation.

4.1. Local operations: rotations and transpositions

Let us assume that H1 is a Hamiltonian with a third-order DLOL1 (2) and we know one 3-
SUSY cycle (15), denoted by C1: {H1,H2,H3}. A triangle representation is used to condense
all the information (figure 1): in each vertex a potential (Vi) is placed. The arrows connecting
vertexes have associated a factorization eigenvalue αi (defining the 1-SUSY) and a PIV solution
gi . Note that αi’s give the PIV parameters through equations (28) and (33), and gi’s give the
intermediate IO through equations (29) and (14).

In order to fix the first potential in the cycle, and also to keep track of the shift in some
elements of the chain, the last arrow has a different shape and will be called reference arrow.
For instance, after this arrow we read: V1 − 2, α1 − 2, V2 − 2, . . . and so on to continue
the (pseudo)-cycle. As a criteria for a better understanding of symmetry properties in the
geometrical representation we will choose α3 = 0 (see footnote 3) and place the reference
arrow parallel to the horizontal axis.

4.1.1. Rotations. As a cycle does not exactly close and can be continued forward
and backward it should be represented like a helix, but it is simpler to draw it like a
loop in a plane just taking care of the shifts in Hi, Vi, αi . Due to this continuation it
is obvious that each intermediate Hamiltonian admits a third-order ladder operator, their
cycles have no new elements. It is like choosing a new starting point, for instance,
C2 : {H2,H3,H1 − 2} ∼ {H2;α2, α3, α1 − 2} ∼ {H2; g2, g3, g1}.

We will refer to this operation by R and its geometrical effect will be an anticlockwise
rotation of the arrows, making the necessary shifts ±2 as shown in figure 2.

From the geometrical point of view, the rotations will be used to place the reference arrow
of the triangles on the horizontal axis and show up better the symmetry properties in different
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V 1 V 3

α2α1

α3

V 2

g2

g3

g1

T1

= 0

V 1

α2
α1

α3 V 2

g1

V3 + 2
(

β2
g1

)′

g2 − β2
g1

g3 + β2
g1

= 0

Figure 3. Diagram of T1 transformation: (a) eigenvalues are crossed, (b) PIV solutions are modified
adding a term proportional to (α2 − α3) and to the inverse of g1, (c) the third potential has an
additional derivative term.

hierarchies. Summarizing the effect of R on C1:

R
L1 = L3L2L1 −→ L2 = L1L3L2

{α1, α2, α3} −→ {α2, α3, α1 − 2}
{V1, V2, V3} −→ {V2, V3, V1 − 2}
{a1, b1} −→ {

a2 = 1 − β2 − 1
2β3, b2 = − 1

2β2
3

}
.

(34)

The superpotentials, gi’s, and the parameters βi’s are just affected by a cyclic rotation. Note
that the solution g2 of the ‘rotated’ PIV equation can be written as a function of g1 (30).
Three consecutive applications of R gives a global shifted cycle, then R3 ≡ I. Although the
inverse rotation R−1 is equivalent to a double rotation R2 we will consider it as a positive
shift on Hamiltonians and eigenvalues: R−1C1 → C0, where C0 ∼ {H3 + 2,H1,H2} ∼
{α3 + 2, α1, α2}.

4.1.2. Transpositions. A factorization of L is determined by the annihilation order of the
eigenfunctions with factorization eigenvalues {α1, α2, α3} by the 1-SUSY IOs. Changing
the annihilation order of the eigenfunctions associated to the last two eigenvalues gives the
same L for H1 but with different factorization and, therefore, with a new cycle [11, 23, 24].
All the elements of the new cycle can be expressed as functions of those of the old one. As
the first eigenvalue is left invariant we will refer to this operation by T1. The application of T1

on C1 gives, having in mind (30):

T1

{α1, α2, α3} −→ {α1, α3, α2}
{V1, V2, V3} −→

{
V1, V2, V3 + 2

(
β2

g1

)′}

{g1, g2, g3} −→
{
g1, g2 − β2

g1
, g3 +

β2

g1

}
,

(35)

where prime denotes differentiation.
Regarding geometry, T1 behaves like a reflection with respect to a parallel line to the first

arrow since the elements on this line are left unchanged, as explained in figure 3. Transpositions
are transformations of second order, i.e., T 2

1 ≡ I.
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Figure 4. The transformation RT2. Each picture shows the transformation rules of one element:
factorization eigenvalues, potentials and PIV solutions. The inverse T2R−1 recovers the starting
cycle.

The operations R and T1 will be considered the basic ones. They do not commute and
generate an infinite group of transformations. The relation between them is expressed by the
identity

(RT1R−1T1)
3 = I. (36)

Then, starting from a Darboux cycle, by applying these operations we can relate it with an
infinite number of different cycles leading to a hierarchy of infinite Hamiltonians, each of
them with a third-order shift operator, and also to a hierarchy of PIV equations [9, 11, 25]
whose solutions are also related.

We could have done a direct definition, in the same way as above, of two other
transpositions T2 and T3 leaving unchanged the second and third arrow, respectively. However,
it is also possible to define them combining the two operations already defined:

T2 := R−1T1R and T3 := RT1R−1. (37)

In order to build the general geometrical structure of hierarchies, three transformation
axis are defined using combinations of transpositions and rotations. An imaginary square grid
is used to label potentials and PIV solutions where an overline means a negative index. From
now on potential V00, equivalent to V1, will be the starting potential set at the origin of the
grid.

(i) π
3 -axis. It forms a π

3 angle with the horizontal line and is related to T2 because this
transformation leaves invariant the second arrow in the cycle. Besides T2, it is also
necessary to apply a rotation to place the reference arrow on the horizontal axis. Then, we
will assume that reflection with respect to the π

3 -axis carries out the operation RT2 when
going from the upper plane to the lower one as seen in figure 4. Its inverse operation is
T2R−1.

(ii) −π
3 -axis. In this case the angle with the horizontal line is −π

3 , the first arrow is invariant
and we also need a rotation. Then, the transformation R−1T1 is used to go from the upper
to the lower half-plane of the −π

3 -axis (figure 5). Note that due to the rotation the first
arrow is transformed into the second one of the new cycle.

(iii) Horizontal axis. The transformation is directly carried out by T3 (figure 6).

With these axes and their associated operations above defined, it is possible to find the
other five cycles related to the starting Hamiltonian H1 ≡ H00 (15). It turns out to form
a hexagon with the initial potential in the centre (figure 7). This fundamental cell in the
geometrical representation of cycles is related to the commutation relation (36).

9
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Figure 5. Scheme of R−1T1 transformation. The inverse is T1R.

V 12

V 00 V 02

α2

α2

α

α

3

1

α1

g 11

g 10

g10

T
T

3

3

V21+ 2
(

β1
g01

)′

g10− β1
g01

g11+ β1
g01

T3T3

T T
3 3

Figure 6. T3 transformation representation.

V 12 V 12

V 21 V 21

V 02 V 00 V 02

g 02

g20

g 10 g 10

g11 g11

g12 g10

g 21 g 01

g 11 g 11

2α1 + α1

2α1 + α12α2 + α2

2α2 + α2

Figure 7. Representation of the six possible cycles associated with a Hamiltonian with potential
V00.

The hexagon (figure 7) involves up to 7 different potentials and 12 PIV solutions all of
them obtained from H00 and g10 ≡ g1. The most interesting point is that these PIV solutions
are only generated by means of algebraic manipulations from {g1, g2, g3} of the initial cycle.
For new potentials one differentiation is needed in each operation, or by means of PIV solutions
through superpotentials (6) just one differentiation is enough to compute any potential in the
hierarchy.
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Figure 8. Diagram for an arbitrary hierarchy generated from one given cycle V00, V21, V02 (in
red). Potentials, PIV solutions and factorization eigenvalues are displayed.

4.2. Global operations: transfers

The basic operations are enough to cover the whole plane with triangles representing the cycles
of a hierarchy, but it will be easier if we define transfer operations that enable us to move
directly between neighbouring triangles (cycles) along the three reference axes ( π

3 ,−π
3 and

horizontal). Regarding the eigenvalues, as the third one is always set to zero and its associated
arrow (the reference one) is placed on the horizontal axis, the other two axes

(
π
3 ,−π

3

)
can be

seen as eigenvalue axes. Therefore, we define two operations that just shift one eigenvalue
(α1 or α2) leaving unchanged the others:

• Transfer along the −π
3 -axis is carried out by D1

D1 := T3T1R : {α1, α2, α3} → {α1 − 2, α2, α3} (38)

changing the value of α1 in steps of ±2 units. The triangle arrows point at the decreasing
direction.

• In the same way, transfer D2 changes α2 along the π
3 -axis,

D2 := T1RT3 : {α1, α2, α3} → {α1, α2 − 2, α3}. (39)

TransfersD3 along the horizontal axis can be achieved applying a simultaneous shift along
the other two axes, but it plays a secondary role. It is also possible to write D2 = R−1D1R
and D3 = RD1R−1.

The most general hierarchy’s structure is shown in figure 8. In particular, it can be seen
how factorization eigenvalues are distributed, which will be a very useful tool to analyse the
structure of particular hierarchies, the spectrum and singularities of the generated potentials
and PIV solutions, and how these properties are periodically distributed in hierarchies.
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4.3. Fundamental cell in eigenvalue space

We have seen that all the eigenvalues involved in a hierarchy can be derived through application
of basic operations from a starting pair (α1, α2), then each hierarchy has a set of related pairs
of eigenvalues and can be characterized giving the value of one of those pairs (note that we
have fixed α3 = 0). Thus, considering the space of eigenvalues R

2 we can find a fundamental
cell where each point (α1, α2) determines a different hierarchy.

Moreover, each hierarchy has associated a set of PIV equations (32) whose parameters
are determined by the factorization eigenvalues (33). Then, the problem of solving a PIV with
arbitrary parameters is ‘reduced’ to find the solutions of the PIV equations whose parameters
lie in the fundamental cell. In particular, some special values of the cell parameters will be
shown to have simple rational solutions.

The (real) factorization eigenvalues (α1, α2) will be represented as the Cartesian
coordinates in the affine R

2 eigenvalue space. Any operation will be represented by an
affine transformation. The action of a rotation R is (section 4.1)

R
{α1, α2, 0} −−−−−−−→ {α2, 0, α1 − 2} ≡ {α2 − α1 + 2,−α1 + 2, 0}, (40)

so, its affine matrix, acting on the vector {1, α1, α2}, is

R =
⎛
⎝1 0 0

2 −1 1
2 −1 0

⎞
⎠ . (41)

In a similar way the matrix for T1 is

T1 =
⎛
⎝1 0 0

0 1 −1
0 0 −1

⎞
⎠ . (42)

And from these two matrices we can get all the operations. In order to obtain the fundamental
cell it is useful to write down the following matrices:

T3 =
⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ D1 =

⎛
⎝ 1 0 0

−2 1 0
0 0 1

⎞
⎠ D2 =

⎛
⎝ 1 0 0

0 1 0
−2 0 1

⎞
⎠. (43)

By means of the transfer matrices D1 and D2 the whole eigenvalue space is obtained from
a square cell of size 2 × 2 because they perform a displacement of two units in each axis:
factorization eigenvalues {α1 − 2n, α2 − 2m, 0} with m, n ∈ Z belong to the same hierarchy.
Now, as T3 is a reflection through the bisector of the axes, the square cell is reduced to a
rectangular triangle (figure 9): {α1, α2, 0} such that 0 � α2 < α1 < 2.

Finally, the symmetry under R has to be explored. Note that in this space distance is not
conserved and R is not a proper rotation (41), but as R3 is the identity the rectangular triangle
is divided into three (irregular) triangles. There is only one invariant point under R, which is{

4
3 , 2

3

}
. Joining each vertex of the previous rectangular triangle with this point gives the new

irregular triangles shown in figure 9.
Each triangle can be used as the definition of the fundamental cell. We choose the one

with basis on α1 axis. Then, the fundamental cell is the set of points{
(α1, α2) ∈ R

2/α2 ∈ [
0, 1

2α1
]
, α1 ∈ [

0, 4
3

];α2 ∈ (0, 2 − α1), α1 ∈ (
4
3 , 2

)}
. (44)

Any hierarchy is determined giving one point within this triangle, for instance, sets of points
belonging to three different hierarchies are shown in figure 9.
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12 1 2

1

3

α2

α

Figure 9. Fundamental cell. Points with the same shape represent cycles in the same hierarchy:
squares for hyperconfluent, triangles for confluent and stars for rotational. They have been
generated from the ones within the fundamental cell.

The parameters of PIV equations in the same hierarchy are grouped into three sets:

a = 1 − α1 +
α2

2
+ m − 2n; b = −1

2
(α2 + 2m)2

a = 1 +
α1

2
− α2 + m − 2n; b = −1

2
(α1 + 2m)2

a = 1 +
α1 + α2

2
+ m − 2n; b = −1

2
(α1 − α2 + 2m)2

(45)

with α1 and α2 in the fundamental cell and m, n ∈ Z.

4.4. Group structure

In this section, we have introduced some basic operations on the cycles composing a hierarchy.
These transformations have the structure of an infinite group generated by R and T1. We can
characterize this group from a geometrical point of view inside the affine two-dimensional
plane: R is represented by a three-fold rotation and T1 by a reflection with respect to a line
not including the centre of rotation.

The subgroup made of reflections has reflection axes parallel to the three lines mentioned
above: π

3 ,−π
3 and horizontal axes. It can be shown that this is an affine reflection group

isomorphic to Ã2 [5, 26, 27]. The subgroup Z3 generated by R is represented by rotations
around the centre of an elemental triangle formed by three reflection axes. An element of Z3

fixes the starting point of the cycle corresponding to such a triangle. Thus, we can say that the
whole transformation group has the structure of semidirect product of the invariant subgroup
Ã2 and the rotation subgroup Z3 [26].

5. Harmonic oscillator hierarchies

The invariance under some basic operations simplify the general hierarchy giving rise to more
symmetrical structures. The harmonic oscillator (HO) is in the background of this situation
and at the same time it supplies us with solutions of PIV that can be expressed in terms of

13
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V21

α1α1

0x2 + 1 x2 + 1
g01 = 0

Figure 10. General three-step cycle for the harmonic oscillator generated by means of an arbitrary
1-SUSY partner.

hypergeometric functions. Bassom et al in [9] have shown three hierarchies including this type
of functions, which were obtained by the application of different Bäcklund transformations.
Here, we will see how all of them are related to the harmonic oscillator and fit quite well in our
approach. Besides, we will study some properties of the physical spectrum of the generated
Hamiltonians in these hierarchies.

Since the harmonic oscillator has a first-order DLO any of its 1-SUSY partners enables the
construction of a three-step Darboux chain (figure 10). The cycle is built using two identical
energies α1 = α2, needed for the 1-SUSY relation, and the ground-physical energy for the
HO first-order DLO (which will be taken α3 = 0). These factorization eigenvalues in the
fundamental cell correspond to the bottom line (figure 9). The above-mentioned three types of
hierarchies [9] are related to the factorization properties of L (section 3.1) and characterized
as follows:

Hyperconfluent hierarchy. It is the simplest hierarchy, defined by the point {0, 0} in
figure 9. The same eigenvalue α1 = α2 = α3 = 0 is used in the factorization providing
a realization of diagram (17), hence the name of HO hyperconfluent hierarchy. In this case,
the general scheme (figure 8) has several additional global symmetries (see figure 11). To
show them clearly we have applied transpositions without rotations, finding three reflection
symmetries: T3 leaves invariant one horizontal line, T1 one π

3 line and T2 one −π
3 line. Each

symmetry divides the hierarchy into two halves generating six identical wedges. The starting
hexagon has six identical cycles (figure 11) and each square in figure 9 includes just one
point.

Confluent hierarchy. For the other points lying in the bottom line of the fundamental eigenvalue
cell {α, 0}, α ∈ (0, 2), there is also a global symmetry in the general scheme (figure 8). In
this case, only the reflection T3 in one horizontal line divides the hierarchy into two identical
parts (figure 20), thus the starting hexagon has just three different cycles (three points in each
square in figure 9). This class supplies a realization of the confluent case of section 3.1.

Rotational hierarchy. One more hierarchy is known to be associated with the HO. It is obtained
by repeated application of the first-order HO ladder operator. And it is characterized by the
rotational invariant point

{
4
3 , 2

3

}
in the fundamental cell (figure 9), where two points are found

in each square. Since the initial cycle has a rotational symmetry, this three-fold symmetry is
inherited by the whole hierarchy as shown in figure 25. All the factorization eigenvalues are
different so it constitutes a very special realization of the non-degenerated case of section 3.1.

In the following, we will consider the main features of each hierarchy type.

6. The hyperconfluent hierarchy

The harmonic oscillator potential V (x) = x2 + 1 gives a one parameter family of starting
cycles for this hierarchy. Any linear combination of eigenfunctions with eigenvalue α = 0

14
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Figure 11. General diagram for the hyperconfluent hierarchy.

can be chosen, leading to two kinds of hyperconfluent hierarchies:

(i) Shifted HO: u1 = e
x2

2 .
(ii) Complementary error function5:

u2 = e
x2

2 (A + erfc(x)) ≡ Q(x), (46)

where A is an arbitrary constant.

Each one gives different solutions for the same PIV with the same hierarchical structure
and eigenvalues, but different potentials. We now show the properties of each hierarchy.

6.1. The shifted HO hyperconfluent hierarchy

The shifted harmonic oscillator V21(x) = x2 − 1 is the 1-SUSY partner of the HO in
figure 10. We choose the central bottom wedge of figure 11 to represent this hierarchy
then, we need to make a −π

3 -axis transformation to build it (figure 12). This cycle is enough

5 Where erfc(x) = 2√
π

∫ ∞
x

e−t2
dt .
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Figure 12. Starting cycle for the shifted harmonic oscillator hierarchy. Values of PIV solutions are
shown.
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Figure 13. Scheme for shifted harmonic oscillator hierarchy.

to generate the whole hierarchy, whose potentials have the following properties:

(i) Potentials on both edges of the wedge are shifted HO potentials. On the left edge they
are raised in steps of two units and on the right one they are lowered (figure 13).

(ii) Parallel lines to the right edge (−π
3 -axis) are alternately filled with regular potentials

with spectrum consisting of two sets of equispaced physical eigenvalues, one infinite and
the other finite. As we go down in the hierarchy the finite set increases its size in one
eigenvalue. Both sets are separated by another finite set of equispaced eigenvalues but
associated with non-physical eigenfunctions. This last set is increased in two units as we
move horizontally from the right edge to the left one.

These properties are easily explained in two ways using SUSY-QM results (section 2).
Taking the right edge as a reference and following the horizontal line towards the left edge,
the reasoning is based on the annihilation of levels. Note that in this edge the HO ground
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Figure 14. Starting cycle for the error function hierarchy. Values of PIV solutions are shown.

level is placed below the zero eigenvalue. Then, a two-step movement represents a 2-SUSY
transformation involving two consecutive energies that leads to a regular potential with these
two levels removed from its spectrum (section 2) [3, 16]. The intermediate potential has
singularities because of the vanishing points of the first 1-SUSY generating eigenfunction.
Going on along the horizontal line another two levels are removed below the previous ones
until we reach the left edge where the finite set have been removed.

On the other hand, in the left edge the ground state of the HO is placed above the zero
eigenvalue. If we move downwards a −π

3 line, non-physical eigenfunctions are used to
generate the 1-SUSY transformation. When there is an even number of levels between the
ground energy and the zero energy the resulting potential is regular with a created new energy,
otherwise it has singularities (section 2) [3, 16]. Then, we have alternatively −π

3 lines filled
with regular and singular potentials. Moreover, going along a regular −π

3 line, one level below
the previous one is created thus, the finite spectrum set is increased while the unphysical gap
remains constant.

In summary, the spectrum of a potential in this wedge is characterized according to its
position with respect to the two edges. The horizontal separation from the right edge indicates
the gap between the finite and non-finite spectrum for regular potentials that must be even.
The −π

3 -axis separation of the left edge gives the number of bound states in the finite sector
spectrum (figure 13).

6.2. The error function hyperconfluent hierarchy

The properties of the error function hierarchy, a one parameter family hierarchy fixed by
A /∈ [−2, 0], are essentially the same as in the previous case. Similar arguments about the
regular and singular behaviour apply. However, the potentials are not so simple, since the
error function is present in the initial eigenfunction. The main difference is that, although
the left edge has the same shifted HO potentials, the right edge is not filled with shifted HO’s
but with their isospectral potentials (figure 14).

PIV solutions have similar regular properties in both hierarchies. Solutions ‘connecting’
regular potentials (alternate parallel −π

3 lines) are regular and increasing in two units the
number of zeros in each step as going downwards. In the other series of parallel lines, the
solutions have singularities, also increasing its number in two units.

Solutions associated with π
3 parallel lines are all singular but the null trivial solution

coinciding with the left edge. The number of singularities is equal in each line and increases
in one unit as the line moves away from the left edge.

For solutions in horizontal lines it is seen that going down, along the −π
3 direction, the

number of singularities increases in one unit each step. The same happens as we move on the
horizontal direction from the left edge. Horizontal regular solutions are only found in the left
edge triangles.
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Figure 15. Potentials of the shifted HO hierarchy: (a) Potential V82(x) (b) potential V61(x)

(c) potential V80(x).
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Figure 16. Potentials of the error function hierarchy with parameter A = −2.1 in red continuous,
A = 0.1 in green dashed and A = 3 in blue dotted and dashed (a) potential V82(x) (b) potential
V61(x) (c) potential V80(x).

The asymptotical behaviour of PIV solutions on ±π
3 lines is the same, vanishing as

x → ±∞. This effect comes from eigenfunctions that diverge at infinity. Contrary, the
solutions on horizontal lines diverge as x → ±∞, due to convergent vanishing eigenfunctions.
Some examples are shown in section 6.3.

Another difference worth noting concerning the shifted HO hierarchy, is the existence of
a parameter set, A ∈ (−2, 0), where the regular and singular properties are swapped due to
the error function shape: −π

3 lines which were filled with regular potentials and PIV solutions
are now singular and vice versa. When A = −2 or A = 0 the finite set in the spectrum of
regular potentials disappears, remaining only the infinite one.

6.3. Examples

Let us work out an example to illustrate these properties. Consider the potential V80(x) in
the cycle with factorization energies {6,−2, 0}, potentials {V82, V61, V80} and PIV solutions
{g72, g71, g81} (see figure 13).

Following the previous arguments it is easy to check the main properties. The first
potential V82 is separated by an odd number of steps from the right edge then, it is non-regular.
As it is one step off the left edge it only has one singularity (figure 15–16(a)). The other two
potentials lie on a −π

3 regular line so they have a physical spectrum. Both of them are two
steps from the right edge then, there is a gap of two levels between the infinite and the finite
equispaced spectra. The finite set has one point for V61 and two points for V80 according to
their separation from the left edge (figures 15–16(b) and (c)). It is also shown in figure 17
how the analysis is completely reversed when A ∈ (−2, 0).

More explicitly, for the Hamiltonian with potential V80 we have6:

6 All the explicit expressions in this section are given for the shifted HO hierarchy.
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Figure 17. Potentials of the error function hierarchy with parameter A = −1.9 in red continuous,
A = −1 in green dashed and A = −0.1 in blue dotted and dashed (a) potential V82(x) (b) potential
V61(x) (c) potential V80(x).

(i) PIV solutions for this cycle are obtained applying basic operations on the starting cycle
{2, 0, 0} (see figures 12, 14). First acting twice with the inverse of D1 (38), then once
with transfer D2, and we are led to the cycle of energies {6,−2, 0}, where V80 is in the
third position. Only algebraic manipulations are needed to achieve an explicit expression
for {g72, g71, g81}. All the information about V80 can be extracted from its related PIV

solutions, six in total: three associated with arrows pointing inwards, g71, g81, g91 (see
figure 13),

g71 = − 4x

1 + 2x2
+

16x3

3 + 4x4
(47)

g81 = −2x − 1

x
+

4x

3 − 2x2
+

16x3

3 + 4x2
(48)

g91 = − 4x(27 + 72x2 + 16x8)

−27 + 54x2 + 96x6 + 48x8 + 32x10
(49)

and three pointing outwards, g70, g81, g90 (see figure 13),

g70 = 4x

−1 + 2x2
− 16x3

3 + 4x4
(50)

g81 = −2x +
1

x
+

4x

3 + 2x2
− 16x3

3 + 4x4
(51)

g90 = 4x(27 − 72x2 + 16x8)

27 + 54x2 + 96x6 − 48x8 + 32x10
. (52)

(ii) The potential V80 can be obtained in several ways, applying basic operations, but they
involve one differentiation in each step. Or, using any of the related PIV solutions where
just one differentiation is involved: the superpotential is given by equation (29) and the
potential is calculated with the help of equation (6) (for incoming arrows the superpotential
sign is changed). This potential is

V80 = 1 + x2 +
32x2(−9 + 4x4)

(3 + 4x4)2
(53)

And, in the error function hierarchy it is a rational function involving Q(x) (46).
(iii) The third-order ladder operator (12) is built up using PIV solutions of a cycle properly

ordered (47)–(51):

LV80 = (∂x − (g71 + x))(∂x − (g72 + x))(∂x − (g81 + x)). (54)

It is a creation ladder operator and its adjoint (9) is the annihilation ladder operator.
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Figure 18. V80(x) eigenfunctions in the shifted HO hierarchy annihilated by creation third-order
operator corresponding to the eigenvalues: −4 (a), 0 (b) and 4 (c).

(iv) The spectrum of square-integrable functions is found by means of the functions annihilated
by the third-order ladder operators. So, the three functions annihilated by the creation
operator are calculated from the PIV outgoing solutions g70, g81 and g90 with eigenvalues
4, 0 and −4, respectively, through the superpotential definition (5). These solutions are

u70 = −1 + 2x2

3 + 4x4
e

x2

2 (55)

u81 = x(3 + 2x2)

3 + 4x4
e

−x2

2 (56)

u90 = 9 + 18x2 − 12x4 + 8x6

3 + 4x4
e

x2

2 . (57)

They correspond to the top level of three different eigenfunction sets, each one with
the same character: u70 and u90 are not square-integrable, while u81 is (figure 18).
The lowering third-order operator annihilates other three functions. These are obtained
from the PIV incoming solutions g71, g81 and g91 with eigenvalues −2, 2 and 6,
respectively. They are

u71 = 1 + 2x2

3 + 4x4
e

−x2

2 (58)

u81 = x(−3 + 2x2)

3 + 4x4
e

x2

2 (59)

u91 = −9 + 18x2 + 12x4 + 8x6

3 + 4x4
e

−x2

2 . (60)

Now, these eigenfunctions correspond to the lowest level of three eigenfunction sets, each
one including eigenfunctions with the same character: u71 and u91 are square-integrable
while u81 is not (figure 19).

From these results we conclude that the spectrum consists of two sets of eigenvalues

E = {−2, 0} ∪ {6, 8, . . . , 2n . . .}. (61)

That is, a finite set with two eigenvalues and an infinite one separated by a gap of two
non-physical eigenvalues.

From the point of view of the algebra {H,L±}, these eigenfunctions generate
the support spaces of four irreducible representations: two of them are non-physical
(made up of non-square-integrable functions) corresponding to the eigenvalue sets
E1 = {. . . ,−2m, . . . ,−4}, E2 = {2, 4}; and two physical: E3 = {−2, 0}, E4 =
{6, 8, . . . , 2n . . .}.
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Figure 19. V80(x) eigenfunctions in the shifted HO hierarchy annihilated by annihilation third-
order operator with eigenvalues: −2 (a), 2 (b) and 6 (c).
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Figure 20. General scheme showing the invariant horizontal line under T3 for the confluent
hierarchy: {α,0}.

Exactly the same situation occurs in the error function hierarchy when A /∈ [−2, 0] with
more complicated expressions. When A ∈ (−2, 0) the potential V80 is non-regular then, the
whole spectral analysis is nonsense, but the same procedure can be applied to other regular
potentials in the hierarchy.

7. The confluent hierarchy

Let us consider the more general but less symmetrical confluent hierarchy. In the general
scheme (figure 20) it has one global horizontal symmetry axis. The simplest starting cycle
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for a general α ∈ (0, 2) is shown in figure 10. There are two independent solutions for the
HO eigenvalue problem that can be written in terms of confluent hypergeometric functions:
e−x2/2	

( 2−α
4 ; 1

2 ; x2
)

and e−x2/2x	
(
1 − α

4 ; 3
2 ; x2

)
. Any linear combination of them generates

a solution of PIV with parameters a = 1 − α
2 , b = − 1

2α2 leading to a one parameter family of
PIV solutions.

Consider the general eigenfunction7 [28, 29]

uα(x) = e− x2

2

[
D	

(
2 − α

4
; 1

2
; x2

)
+ x	

(
1 − α

4
; 3

2
; x2

)]
. (62)

It gives rise to the first PIV solutions of the starting cycle C1 : {H00,H21,H02} through
equations (5) and (29):

g10(x) = −2x+
(α−2)

(
	

(
1− α

4 ; 3
2 ; x2

) − 2Dx	
(

3
2− α

4 ; 3
2 ; x2

)) − (α−4)	
(
2− α

4 ; 3
2 ; x2

)
2
(
D	

( 2−α
4 ; 1

2 ; x2
)

+ x	
(
1 − α

4 ; 3
2 ; x2

))
g11(x) = − (α − 2)

(
	

(
1 − α

4 ; 3
2 ; x2

) − 2Dx	
(

3
2 − α

4 ; 3
2 ; x2

)) − (α − 4)	
(
2 − α

4 ; 3
2 ; x2

)
2
(
D	

( 2−α
4 ; 1

2 ; x2
)

+ x	
(
1 − α

4 ; 3
2 ; x2

))
g01(x) = 0.

(63)

The behaviour of the eigenfunction uα(x) (62) leads to three different situations related to
its vanishing points. Two parameter regions are separated by an α-dependent value [29]

Dlim := 
( 2−α
4 )

2
(1− α
4 )

: (i) there are no vanishing points if D ∈ (Dlim,∞) then uα(x) → +∞ as
|x| → ∞; (ii) if D ∈ [0,Dlim) there is one zero and the function goes to ±∞ as x → ±∞;
and finally (iii) when D = Dlim the function goes asymptotically to zero as x → −∞ and
diverges to ∞ when x → ∞. In analogy to the error function hyperconfluent hierarchy the
properties of the situations (i) and (ii) are similar but the regular and singular potentials of
parallel −π

3 lines are interchanged while case (iii) gives isospectral potentials. We will fix our
attention on the first situation (i).

Due to the global symmetry, we can restrict to the lower half plane of the hierarchy, which
is obtained by applying basic operations to the starting cycle (figure 10) as described in the
previous section. To study the regularity properties the −π

3 lines will act as reference and, in
particular, the one crossing V00 will play the role of a border line.

The properties of the potentials in this hierarchy are the following:

(i) Potentials on the top horizontal line consist of the same HO potential V (x) = x2 + 1.
(ii) Regular potentials are placed on alternate −π

3 lines starting on the V00 line and moving
towards the right (blue lines in figure 20). Let us take a potential in one regular line with
position coordinates (mf ,mi) with respect to the −π

3 and horizontal lines, respectively.
Then, the spectrum will consist of two sets: one is that of the HO, while the other is a
finite one produced by mf SUSY transformations separated by a gap of α − 2mi :

E = {α − 2(mi + mf − 1), . . . , α − 2mi} ∪ {2, 4, 6, . . .}. (64)

(iii) On the right of the −π
3 border line, between two −π

3 lines of regular potentials there is one
filled with singular potentials (V02, V06, . . .). The number of singularities also increases
as we go down these lines.

(iv) Looking at the left side from the border line all the potentials have singularities following
a rather complex pattern.

7 We restrict the values of D to the positive axis because uα(x, −D) = −uα(−x, D).
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Figure 21. Confluent hierarchy potential V25(x) for different values of the eigenvalue α and the
constant D: in continuous red D = Dlim + 0.1 and dashed blue D = 100Dlim. (a) α = 0.2;
(b) α = 1; and (c) α = 1.8.

(v) The effect of the arbitrary constant D is to modify the symmetry of the potential moving
the minima and maxima. As the eigenvalue α becomes near 2 the shape becomes sharper.

(vi) The regular potentials for the values of D in case (ii) are placed on −π
3 lines containing

V02, V06, . . . .

As far as PIV solutions are concerned, the only regular solutions are associated with arrows
connecting regular potentials and those within cycles on the top horizontal line, also drawn in
blue (figure 20).

All PIV parameters included in this hierarchy can be obtained using equation (33)
and taking into account that any cycle, up to an equivalence, has factorization eigenvalues
{α + 2n, α + 2m, 0} with n,m ∈ Z leading to two groups of parameters:

a = 1 − α

2
+ m − 2n; b = −1

2
(α + 2m)2

a = α − 1 + m + n; b = −2(m − n)2.

(65)

When the eigenfunction (62) has α = 1 and constant D = 2 (A+B)
(5/4)

(B−A)
(3/4)
the generated PIV

solutions coincide with those shown for the half-integer hierarchy in [9], where PIV parameters
take integer and half-integer values (65).

7.1. Example in the confluent hierarchy

As a simple example let us consider the potential V25 briefly. Its shape is shown in figure 21
for different values of the parameter D. It belongs to a cycle obtained after application of T1R
four times to the starting cycle (figure 10). The third-order ladder operator of the Hamiltonian
with this potential can be factorized as

LV25 = (∂x − (g14 + x))(∂x − x)(∂x − (g15 + x)) (66)

where

g15(x) = −2x +
(α − 4)g11

α − 2 + 2xg11
(67)

g14(x) = − (α − 4)g11

α − 2 + 2xg11
, (68)

and g11 is given in equation (63). As in the previous example (section 6.3), three eigenfunctions
related to V25 outgoing arrows (see figure 20) are annihilated by the third-order creation
operator (66) with eigenvalues α−6, α−4 and 0. The only one square-integrable is associated
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Figure 22. Two bottom eigenfunctions of V25(x) in the confluent hierarchy with eigenvalues:
α − 4 in continuous red and two in dashed blue with constant value D = Dlim + 0.1. (a) α = 0.2;
(b) α = 1; and (c) α = 1.8.

6420-2-4-6-8

αα-2 α+2 α+4α-4α-6α-8

Figure 23. Diagram of V25 spectrum in the confluent hierarchy for D ∈ (Dlim, ∞). The physical
spectrum is represented by filled circles. The black and small circles constitute an infinite ladder
while the purple is a finite one. The unfilled circles represent unphysical ladders of L± operators.

with α−4 and is the inverse of the function used to build the 1-SUSY relation between the HO
in the horizontal line and V25. The incoming arrows (see figure 20) give the eigenfunctions
annihilated by the third-order lowering operator (adjoint of (66)) with eigenvalues 2, α − 2
and again α − 4. As the eigenfunctions associated with the eigenvalues α − 4 and two are
square-integrable (figure 22), the spectrum consists (figure 23) of two decoupled sets

E = {α − 4} ∪ {2, 4, 6, . . .} (69)

separated by a non-integer gap. This is in agreement with (64) taking mf = 1 and mi = 2.
Note that the α − 4 eigenfunction is annihilated by both (lowering and raising) third-order
operators because it is a one element set. Therefore, LV25 join functions with eigenvalue α +2n

on one side and 2m on the other. The special case D = Dlim has the peculiarity of being
regular and shares the same spectrum of HO, i.e., the eigenfunction associated with α − 4 is
no longer square-integrable because on one side converges but on the other diverges having
non-vanishing points.

8. The rotational hierarchy

This hierarchy corresponds to the unique rotational invariant point in the eigenvalue space
(figure 9) and it is also related to a harmonic oscillator potential that we take as V (x) = x2

9 + 5
3 .

This rescaling is made in order to have a standard shift of 2 units for the third-order ladder
operator (15). The ground-level energy is now placed at E0 = 2 and the gap between adjacent
energy levels is 2

3 . Note the difference with respect to the other hierarchies where the steps of
the HO spectrum and the third-order DLO coincide.

The starting cycle is obtained by applying the same first-order HO ladder operator three
times, therefore all the potentials involved are equal except for the 2

3 shifts, and the three PIV

solutions associated with this cycle are also the same (figure 24). Then, acting on this cycle
we generate a hierarchy (figure 8) supporting the rotational symmetry with three equivalent
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Figure 25. General scheme for rotational hierarchy.

regions transformed by global 2π
3 rotations around the centre of the starting cycle as shown in

figure 25.
Since the initial PIV solutions are polynomial all the solutions obtained from them in the

rotational hierarchy will be rational. Now, let us see how the regular and singular potentials
are distributed as well as their spectrum properties in this hierarchy. We will fix our attention
just in the bottom right sector.

The most interesting fact is that taking as usual the −π
3 lines as references to analyse the

properties of this hierarchy, it is only found one of these lines filled with regular potentials:
that starting with V21 = x2

9 + 1 and coloured in blue in figure 25. This is a quite different
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Figure 26. The bottom line represents the spectrum of the starting HO V21. The physical energies
are grouped into three infinite sets: green, blue and red, starting from the right. On the second
line one added energy level shows the spectrum for first 1-SUSY regular potential V42 and, on the
upper line one more level is added for V63.
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Figure 27. First regular potentials on the − π
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Figure 28. Regular PIV solutions along the regular − π
3 line starting on g31.

situation from that of the previous hierarchies but it is not difficult to understand it by means
of SUSY transformations.

The spectrum of the starting HO is shown in figure 26 where the energy levels are grouped
into three infinite disconnected sets because the ladder operator L connects levels separated
steps of 2-units, while the shift of the first-order HO ladder operators a± is 2

3 . The Hamiltonians
of the hierarchy are obtained by SUSY transformations from the initial HO, therefore regular
ones have a spectrum differing at most in a finite set of points.

Since L is a third-order DLO annihilates just three eigenfunctions where there is a change
of character from square-integrable to non-integrable functions, so new levels cannot be placed
anywhere. It can be shown, applying the property of section 3.1, that the only way to enlarge
this spectrum is by adding a set of new points starting from −2/3 downwards in 2-unit steps.
The corresponding Hamiltonians fill the only regular blue −π

3 line in figure 27.
PIV solutions have similar properties: regular solutions (figure 25) are also related to

the V21 − π
3 line (blue in figure 25). The other solutions have singularities increasing their

number as we move down along −π
3 direction. It is observed that the number of singularities
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is invariant for PIV solutions associated to −π
3 lines that are placed an even number of lines

from the regular one (g14, g18, . . . and g71, g113, . . .). The asymptotical behaviour is the same
for all solutions i.e. −2x/3.

In the rotational hierarchy any PIV solution can be related to a cycle with factorization
eigenvalues written as

{
4
3 + 2n, 2

3 + 2m, 0
}

given general PIV parameters (33):

a = m − 2n; b = − 2
9 (1 + 3m)2. (70)

9. Conclusions

In this work, we have designed a practical and useful geometric representation of the cycles
describing the hierarchies of Hamiltonians with the third-order DLO. Each cycle can be
considered at three different levels where the elements are: Hamiltonians (H1,H2,H3), PIV

solutions (g1, g2, g3) or factorization eigenvalues (α1, α2, α3) associated with the 1-SUSY
transformations. As it is well known, the consistency of each cycle in order to obtain the
third-order DLO is expressed as a PIV equation.

We have defined operations on the cycles which correspond to properties of the DLO
considered as a 3-SUSY transformation. These operations are easily represented in our
geometrical diagrams giving rise to a lattice describing the Hamiltonian hierarchy.

Three types of cycles generate three kinds of hierarchies, each of them with particular
symmetries. A realization of each of these hierarchy types have been given starting with
the Hamiltonian of the harmonic oscillator. In such realizations we have investigated the
spectrum of the new Hamiltonians involved, regularity properties of PIV solutions, as well as
the relations through SUSY transformations. These properties are regularly displayed in the
geometric representation in an easy way, enabling us to know characteristics of potentials and
PIV solutions without knowing their specific expression. Some examples have been worked
out to illustrate these properties. We have also shown the relation of the spectrum of the
Hamiltonians in each hierarchy with the different kinds of representations of the L± algebra.
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